

A Basic Closed Economy CGE Model: Part 2

Practical CGE, 2024

© cgemod

J

Outline

- Introduction
- Economic Theory
- Mathematical Model
- Data & Behaviour
 - Social Accounting Matrix
 - Behavioural Relationships
- The Model in GAMS
 - Formal/Algebraic Statement
- Equation and Variable Counting

Practical CGE, 2024

© cgemod

The Model in GAMS

Practical CGE, 2024

© cgemod

From Abstract to Concrete

Work from the accounting identities and the behavioural relationships to EQUATIONS

- Production
- Demand
 - Factors
 - Commodities
- Income distribution
- Prices
 - Commodities
 - Factors
- Endowments
- Numéraire
- Optimand

Practical CGE, 2024

© cgemod

Formal/Algebraic Statement

- VARIABLES are in upper case;
- Prefixes: *P* prices; *Q* quantities; *W* factor prices; *F* factor quantities;
- parameters are in lower case, except those used to intialise variables;
- elasticities and associated parameters are given Greek names;
- parameter names have a two-character suffix/prefix which distinguishes their definition, e.g., **sh, io** and **av

$$c = \{\text{primary, secondary}\}\$$
 $a = \{\text{agriculture, industry}\}\$
 $sac = \{c, a, f, h, total\}\$
 $f = \{\text{labour, capital}\}\$
 $h = \{\text{urban, rural}\}\$

Practical CGE, 2024

© cgemod

5

cgemod

Price Block Equations

$$\sum_{h} PQD_{c} * QCD_{c,h} = PX_{a} * QX_{a} \qquad \forall c = a$$

$$PQD_{c} * QQ_{c} = PX_{a} * QX_{a} \qquad \textbf{Acc}^{\textbf{g}} \textbf{ Identity}$$
where $QQ_{c} = \sum_{h} QCD_{c,h}$

$$QQ_c \equiv QX_a \quad \forall c = a$$

Supply = Production

$$PQD_c = PX_a$$
 $\forall c = a$

In GAMS
$$\longrightarrow$$
 $PX_a = \sum_c ioqqqx_{a,c} * PQD_c$

PX(a) = E = SUM(c, ioqqqx(a, c) * PQD(c))

Practical CGE, 2024

© cgemod

Price Tree

- Linear homogenous functions
 - Relative prices
 - If prices known, they can be used
 - Otherwise use P = 1

Practical CGE, 2024

© cgemod

7

Utility Functions & Equations

$$\sum_{c} PQD_{c} * QCD_{c,h} = YH_{h}$$

Accg Identity

$$U_h = \phi_h^u \cdot \prod QCD_{c,h}^{\gamma_{c,h}}$$

Utility function

$$\frac{QCD_{2,h}}{QCD_{1,h}} = \frac{PQD_1}{PQD_2} \cdot \left(\frac{\gamma_{2,h}}{\gamma_{1,h}}\right) = \frac{PQD_1}{PQD_2} \cdot \left(\frac{\left(1 - \gamma_{1,h}\right)}{\gamma_{1,h}}\right)$$

Ist Order Condition

$$PQD_1 * QCD_{1,h} = \gamma_{1,h} * YH_h$$

Eulers theorem

Practical CGE, 2024

© cgemod

Utility Functions & Equations

Expenditure of ALL income to each household MUST be accounted for

$$\sum_{c} PQD_{c} * QCD_{c,h} = \sum_{c} \gamma_{c,h} * YH_{h} = YH_{h}$$
 Complete demand system

All income (YH) is spent on consumption

A (implicit) budget constraint

In GAMS

$$QCD_{c,h} = \frac{comhav(c,h) * YH_h}{PQD_c}$$

PQD(c)*QCD(c,h) = E = comhav(c,h)*YH(h)

Practical CGE, 2024

Production Block Equations

$$PQD_c * QQ_c = PX_a * QX_a \qquad \forall c = a$$

$$\forall c = a$$

Acc^g **Identity**

$$QX_{a} = \alpha_{a}^{x}.FD_{l,a}^{\beta_{l,a}}.FD_{k,a}^{\beta_{k,a}} = \alpha_{a}^{x}.\prod_{f}FD_{f,a}^{\beta_{f,a}}$$

Production function

$$QX_a = ad_a \prod_{f} \left(FD_{f,a} \right)^{\alpha_{f,a}}$$

QX(a) = E = ad(a)*PROD(f,FD(f,a)**alpha(f,a));

Practical CGE, 2024

11

Factor Incomes

$$YF_f = \sum_a WF_f * FD_{f,a}$$

Acc^g **Identity**

In GAMS →

$$YF_f = \sum_a WF_f * FD_{f,a}$$

YF(f) = E = SUM(a, WF(f)*FD(f,a));

Practical CGE, 2024

© cgemod

13

Functional Distribution of Income

$$\sum_{a} WF_{f} * FD_{f,a} = YF_{f} = \sum_{h} WF_{f} * FS_{h,f} \qquad \forall f \quad \mathbf{Acc^{g} \ Identity}$$

$$WF_{f} * \sum_{a} FD_{f,a} = WF_{f} * \sum_{h} FS_{h,f}$$
$$\sum_{a} FD_{f,a} = \sum_{h} FS_{h,f} \qquad \forall f$$

Factor Demand = Supply

$$YH_h = \sum_f WF_f * FS_{h,f}$$

Household Income

Practical CGE, 2024

© cgemod

Household Incomes

$$YH_h = \sum_f WF_f * FS_{h,f}$$

Household Income

$$YH_h = \sum_f hvash_{h,f} *YF_f$$

$$YH(h) = E = SUM(f,hvash(h,f)*YF(f));$$

$$YH_h = \sum_f hvash_{h,f} *YF_f$$

Fixed Endowments

$$hvash_{h,f} = \frac{FS_{h,f}}{\sum_{h} FS_{h,f}} = \frac{WF_f * FS_{h,f}}{\sum_{h} WF_f * FS_{h,f}} \qquad \forall h, f$$

Practical CGE, 2024

15

Market Clearing Equations

$$FS_f = \sum_a FD_{f,a}$$

Factor Demand = Supply

In GAMS
$$\longrightarrow$$

In GAMS \longrightarrow FS(f) =E= SUM(a,FD(f,a));

$$QQ_c = \sum_h QCD_{c,h} + WALRAS$$
 Commodity Supply = Demand

In GAMS \longrightarrow QQ(c) =E= SUM(h, QCD(c,h)) + WALRAS;

$$QQ_c \equiv QX_a \qquad \forall c = a$$

Supply = Production

In GAMS \longrightarrow QQ(c) =E= SUM(a,ioqqqx(a,c)*QX(a));

Practical CGE, 2024

8

16

© cgemod

Other Equations

$$CPI = \sum_{c} comtotsh_{c} * PQD_{c}$$

Numéraire

In GAMS \longrightarrow CPI =E= SUM(c,comtotsh(c)*PQD(c));

$$GDP = \sum_{c,h} PQD_c * QCD_{c,h}$$

Optimand

In GAMS \longrightarrow GDP =E= SUM((c,h), QCD(c,h)*PQD(c));

Practical CGE, 2024

© cgemod

17

cgemod

Model Closure Equations

 $FS_f = \overline{FS}_f$

Full employment

In GAMS →

FS.FX(f) = FSO(f);

 $CPI = \overline{CPI}$

Numéraire

In GAMS -

CPI.FX = CPI0;

Practical CGE, 2024 © cgemod

What is Walras?

Other than a song by the Beatles!!

- Number of variables < Number of equations
 - -n < (n+1)
- Walras's Law
 - if all markets except one are in equilibrium so will be the final market
- Therefore
 - drop an equation?
 - OR add a slack variable
 - if the model is consistent with Walras's Law, the variable *WALRAS* will have a value of zero

Practical CGE, 2024

© cgemod

19

19

Equation & Variable Counting 1

- CGE models are simultaneous equation systems
 - Mathematically numbers of equations & variables must equate
- Counting equations and variables is critical
 - Economically there will always be more variables than equations
 - Flexibility in policy analyses means there will be even more variables than equations
- Matching equations and variables is important
 - Provides understanding of the economic logic
 - But is not always straightforward, e.g., redundancies
- Endogenous vv Exogenous variables (!!)
 - Some variables are designed to be either endogenous (variable) or exogenous (fixed), i.e., they can be changed
 - Different market clearing conditions require changes
 - Different macroeconomic closure conditions require changes
 - Making such changes requires very careful counting

Practical CGE, 2024

© cgemod

20

© cgemod

21

