

Outline

- Introduction
- Data
- **Equation coding**
 - \$STOP
 - Parameters
 - Equations
 - Clearing factor markets
- A Simple Experiment Trade policy
- Comparing Results

Practical CGE, 2024

© cgemod

3

5

Using \$STOP

GAMS Configuration: set to produce $smod^{***}.gdx$ and $smod^{***}.ref$ files with F10

Progress One 'Baby' Step at a Time

- Use **\$stop** to set end of code run
- Use F10 (Run with GDX Creation) to produce updated gdx and ref files

Step 1: Check

- Data Entry
- Data adjustments and scaling
- Data Diagnostics
- Additional set assignments

Gets to starting point for model coding

Practical CGE, 2024

© cgemod

0

Parameter Assignment - smod_t2

NB: Some people find it helps to assign the equations before the parameters

Details for parameter assignments are included in Appendix 2 of the technical document

- 1. CES aggregation functions for Level 1 of production nest
 - a. deltax(a)
 - b. ADX0(a)
- 2. Leontief aggregation functions for Level 1 of production nest
 - a. ioqintqx(a)
 - b. ioqvaqx(a)
- 3. CES aggregation functions for Level 2 of production nest
 - a. deltava(f,a)
 - b. ADVA0(a)
- 4. Intermediate Input Demand
 - a. ioqtdqd(c,a)

SUGGESTION: Use the \$stop after coding each step and use F10 so that the output can be used to check your code.

HINTS:

- determine what each equation does before coding the parameters,
- review the use of Euler's theorem for linear homogenous functions.

TASK

Try to derive such equations, to ensure that the deltax and deltava values sum to one & that none of the values are negative.

Practical CGE, 2024

© cgemod

. .

7

Equation Assignment - smod_t2

Equations needed are already declared

Transform the algebraic expressions, in the smod_t technical document (Appendix 2), into GAMS code.

- 1. Derive interpretations of the parameters
 - a.ioqxcqx(a,c)
 - b.ioqtdqd(c,a)
 - c.ioqintqx(a)
 - d.ioqvaqx(a)
- 2. Explain the derivation of the equation PVADEF (a)

Initialise the 'new' variables

Practical CGE, 2024

© cgemod

8

Defining the Model

The new equations need to be added to the model definition.

This has been done for you in the template.

Checking the Model Closure Conditions

- New technology 'variables', i.e., ADX, ADVA and ADFD.
- ADX and ADVA are variables in the code
- Revise the file smod_t_cl_base.inc to fix arguments in the code for ADX, ADVA and ADFD.

Practical CGE, 2024

© cgemod

9

Check the Model

- 1. Check the data in the model are the intended data.
- 2. Check that the value for VAR WALRAS is zero.
- 3. Check that the basic prices (PE, PD, PM) are equal to one.
- 4. Check that all entries in ASAM1CHK are equal to zero
- 5. Check that all entries in ASAM2CHK are equal to one
- 6. Check the LHS values.
- 7. Numéraire check.

Only after these checks have been passed should you move on to using the model.

Practical CGE, 2024

© cgemod

5

10

A Simple Experiment

Practical CGE, 2024

© cgemod

- 11

11

Experiment

Trade policy experiment from Module O5

Experiment File

- 1. Copy the file smod t exp2.inc used with smod t,
- 2. Add it to your working directory.
- 3. Some changes are needed
 - i. Save the file as smod t2 exp2.inc
 - ii. Use the same experiment
 - iii. Change the model named in the Solve statement
- 4. Make some changes to the code for saving results
 - i. Extend the set scal to include the additional scalar results, e.g., *ADXADJ* and extend the results reported in *levSCAL* and *pcSCAL*.
 - ii. Declare parameters results for the new variables, i.e., lev^{**} and pc^{**} , and assign values to these parameters.

For each run of the model add the instruction gdx=****
in the command line, where **** identifies different runs.

Practical CGE, 2024

© cgemod

12

Comparing Results

Practical CGE, 2024

© cgemod

13

13

Comparing Results

Comparison of the Results

- 1. To compare the results across the 2 different assumptions about factor market clearing, use the GDX MERGE utility. Open the file compare.gms and save it as compare**.gms.
- 2. Edit the call statement to refer to the gdx files generate by each run of the model.
- 3. Run compare**.gms (make sure compare**.gms is the Main File before running the model). Review the merged file, MERGE.GDX.

EXPECTATIONS

Analyse the results

Emphasise explanation not simple reporting of the results.

- 1. Factor demands (FD)
- 2. Factor prices (WF and WFDIST) and factor incomes (YH)
- 3. Value added (QVA) and intermediate inputs (QINT)
- 4. Production structure (QX and QXC)
- 5. Domestic quantities (QD and QQ)
- 6. Household incomes (YH) consumption (HEXP & QCD) & welfare (EV)
- 7. etc.

Practical CGE, 2024

© cgemod

7

14

