

STAGE_t: Tax and Efficiency Adjustments

Single Country CGE, 2024

© cgemod

1

Outline

- Tax rate Adjustment
- ALL tax rates defined as variables
 - ALL tax rates have a common adjustment mechanism
 - Multiplicative changes
 - Additive changes
- Efficiency changes
 - ALL efficiency factors defined as variables
 - ALL efficiency factors have a common adjustment mechanism
 - Multiplicative changes
 - Additive changes
- Hence, we have added a lot of variables some without equations

Single Country CGE, 2024

© cgemod

Why Tax Rate Adjusters?

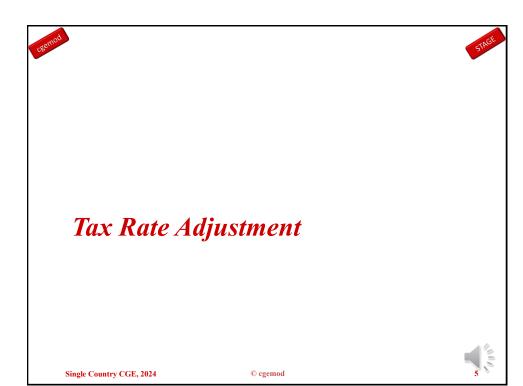
- The **base** tax rates are parameters in this model
 - therefore, base tax rates cannot be target variables
 - but 'optimal' tax rates are policy objectives
- Applied tax rates are variables
- Models are square variable & equation counts equate
 - multiple tax rates
 - single target variables
 - must maintain equation and variable counts
- Simplify simulations
 - tax rate adjusters exist **SOLELY** to aid simulations
- Adjusters are links between base and applied tax rates

Single Country CGE, 2024

© cgemod

3

Why add so many variables?



- We can only shock parameters
- Additional variables allow us to
 - change multiple parameters with one target
 - e.g., change ALL tariffs for a target internal balance and/or identify optimal tax rates
 - simplify the coding of simulations
 - BUT it makes the code less transparent
- This method means that we have
 - endogenous 'variables' flexed in the closure
 - exogenous 'variables' fixed in the closure

Single Country CGE, 2024

Import Duties

- tmb_c vector of import duties in the base solution.
- *dabtm_c* vector of absolute changes in the vector of import duties taxes initial values ZERO.
- *TMADJ* specific variable whose initial value is ONE (parameter).
- *DTM* specific variable whose initial value is ZERO (parameter).
- $tm01_c$ vector of zeros and non zeros initial values ZERO.

Single Country CGE, 2024

© cgemod

Import Duties: Multiplicative

• If *TMADJ* is made a variable, then the solution value for *TMADJ* yields the optimum equiproportionate change in the import duty rates necessary to satisfy model constraints.

Single Country CGE, 2024

© cgemod

7

Import Duties: Fixed Additive

• If any element of *dabtm(c)* is not zero, then an absolute change in the initial import duty rate for the relevant commodity is imposed.

Single Country CGE, 2024

Import Duties: Multiplicative

• If *TMADJ* is made a variable, and any elements of *dabtm(c)* are nonzero, then the solution value for *TMADJ* yields the optimum equiproportionate change in the *applied* import duty rates, i.e., (*tmb(c)* + *dabtm(c)*).

Single Country CGE, 2024

© cgemod

9

Import Duties: Additive


```
TMDEF(c)..
TM(c) = E = [(tmb(c) + dabtm(c)) * TMADJ] + [DTM * tm01(c)];
```

• If *DTM* is made a variable, and ALL elements of *tm*01(c) are 'ONE' then ALL the elements of *tmb(c)* increase (additively) by an equal absolute amount determined by the solution value for *DTM*.

Single Country CGE, 2024

Import Duties: Additive 2

• If *DTM* is made a variable, AND at least **one** element of *tm*01(c) is 'ONE' then the subset of elements of *tmb(c)* identified by *tm*01(c) are allowed to (additively) increase by an equal absolute amount determined by the solution value for *DTM* so as to satisfy the model.

Single Country CGE, 2024

© cgemod

11

Import Duties: Additive 3

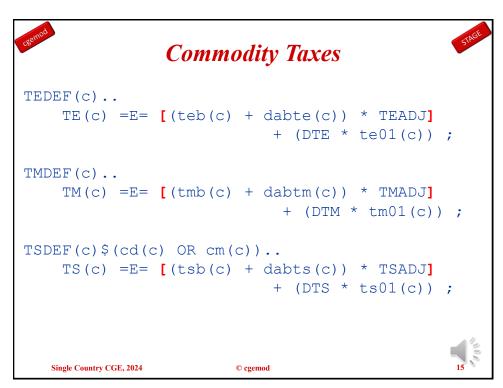
- If the change in the applied tax rates is to be other than equal, then values of *tm*01(c) other than 'one' can be applied.
- Typically, the values for *tm*01(c) will be bounded by ZERO and ONE.

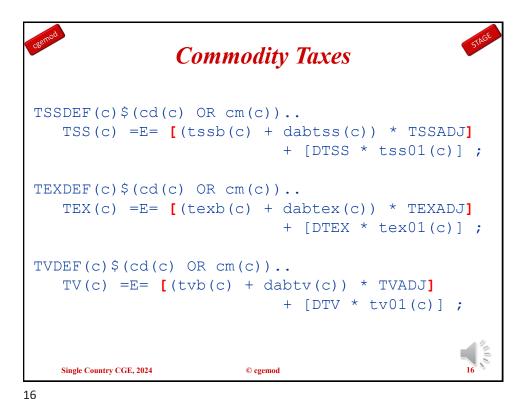
Single Country CGE, 2024

Model Variables & Equations



- Variables added to the model with equations
 - *T***(. .)
 - T**DEF(..)
- Variables added to the model w/o equations
 - $-T^{**}ADJ(\ldots)$
 - $-DT^{**}(\ldots)$
- Increases the number of variables that **must** be fixed


Single Country CGE, 2024


© cgemod

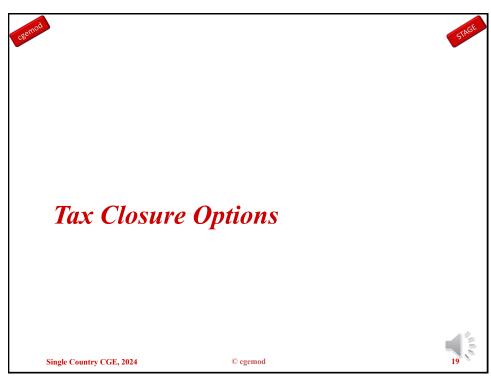
Activity Taxes

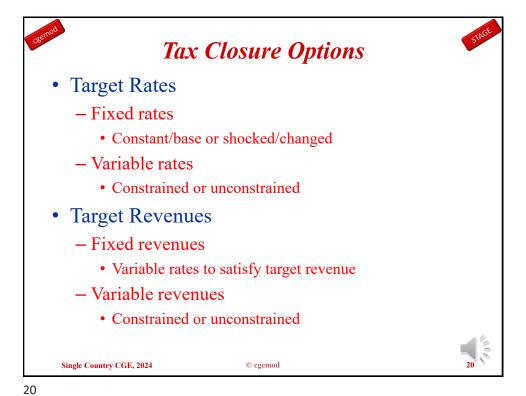

```
Direct Taxes

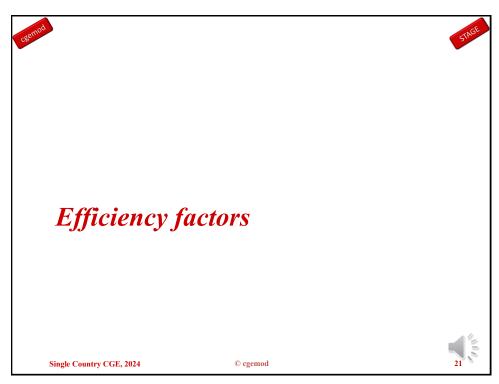
TYFDEF(f)..

TYF(f) =E= [(tyfb(f) + dabtyf(f)) * TYFADJ] + [DTYF * tyf01(f)];

TYHDEF(h)..


TYH(h) =E= [(tyhb(h) + dabtyh(h)) * TYHADJ * TYADJ] + [DTYH * DTY * tyh01(h)];

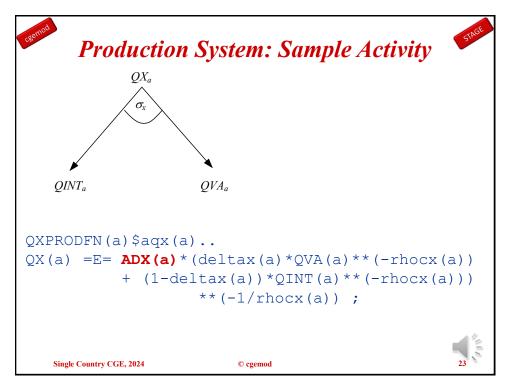

TYEDEF(e)..


TYE (e) =E= [(tyeb(e) + dabtye(e)) * TYEADJ * TYADJ] + [DTYE * DTY * tye01(e)];

Single Country CGE, 2024 © egemod
```


Standard Format


```
ADXEQ(a)..


ADX(a) =E= [(adxb(a) + dabadx(a)) * ADXADJ] + [DADX * adx01(a)];
```

- $adxb_a$ vector of efficiency parameters.
- *dabadx_a* vector of absolute changes in the vector of efficiency parameters initial values ZERO.
- *ADXADJ* specific variable whose initial value is ONE.
- *DADX* is a specific variable whose initial value is ZERO.
- $adx01_a$ vector of zeros and non zeros initial values ZERO.

Single Country CGE, 2024

Top Level: Multiplicative


```
ADXEQ(a)..

ADX(a) =E= [(adxb(a) + dabadx(a)) * ADXADJ] + [DADX * adx01(a)];
```

- If *ADXADJ* is made a variable, then the solution value for *ADXADJ* yields the optimum equiproportionate change in the top level efficiency factors necessary to satisfy model constraints.
- If *ADXADJ* is made a variable, and any elements of *dabadx* are non zero, then the solution value for *ADXADJ* yields the optimum equiproportionate change in the *applied* efficiency factors, i.e., *adxb* + *dabadx*.

Single Country CGE, 2024

Top Level: Additive


```
ADXEQ(a)..

ADX(a) =E= [(adxb(a) + dabadx(a)) * ADXADJ] + [DADX * adx01(a)];
```

- If any element of *dabadx* is not zero, then an absolute change in the initial efficiency factors for the relevant activities are imposed.
- If *DADX* is made a variable, and ALL elements of *adx*01 are ONE then ALL the elements of *adxb* increase (additively) by an equal absolute amount determined by the solution value for *DADX*.
- If the change in the applied efficiency rates is to be other than equal then values of adx01 other than one can be applied.

Single Country CGE, 2024

© cgemod

25

$Value \ Added \ Production \ System$ QVA_a $FD_{k,a} \ FD_{ll,a} \ FD_{l2,a}$ QVAPRODFN (a) ... QVA (a) = E = $ADVA (a) * \{SUM[f\$deltava(f,a), deltava(f,a) \\ * (ADFD(f,a) * FD(f,a)) * * (-rhocva(a))] \}$ ** [-1/rhocva(a)];Single Country CGE, 2024

Value Added Production System


```
ADVAEQ(a)..

ADVA(a) =E= [(advab(a) + dabadva(a)) * ADVAADJ]
+ [DADVA * adva01(a)];
```

- If *ADVAADJ* is made a variable, then the solution value for *ADVAADJ* yields the optimum equiproportionate change in the Second Level efficiency factors necessary to satisfy model constraints.
- If *ADVAADJ* is made a variable, and any elements of *dabadva* are non zero, then the solution value for *ADVAADJ* yields the optimum equiproportionate change in the *applied* efficiency factors, i.e., *advab* + *dabadva*.
- If any element of *dabadva* is not zero, then an absolute change in the initial efficiency factors for the relevant activities are imposed.
- If *DADVA* is made a variable, and ALL elements of *adva0*1 are ONE then ALL the elements of *advab* increase (additively) by an equal absolute amount determined by the solution value for *DADVA*.
- If *DADVA* is made a variable, AND at least one element of *adva01* is ONE then the subset of elements of *advab* identified by *adva01* are allowed to (additively) increase by an equal absolute amount determined by the solution value for *DADVA* so as to satisfy the model.
- If the change in the applied efficiency rates is to be other than equal then values
 of adva01 other than one can be applied.

Single Country CGE, 2024

© cgemod

27

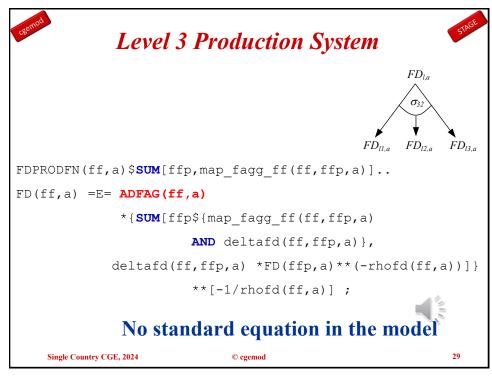
cemod

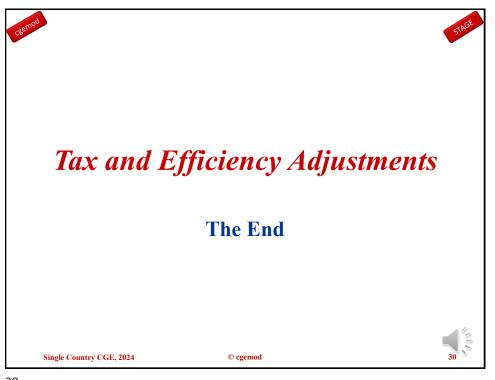
Value Added Production System


```
QVA_a
\sigma_{va}
FD_{k,a}
FD_{ll,a}
FD_{l2,a}
```

```
QVAPRODFN(a) $rhocva(a).. FD_{ka} \quad FD_{ll,a} \quad FD_{ll,a}
QVA(a) =E= ADVA(a)
 * (SUM(ff\$[map\_va\_ff(ff,a) \ AND \ deltava(ff,a)], 
 deltava(ff,a) 
 * (ADFD(ff,a)*FD(ff,a))**(-rhocva(a))))
```

**(-1/rhocva(a));


Stock/flow relationship


No standard equation in the model

Single Country CGE, 2024

