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Isoquants and Technical Efficiency 

In neoclassical economics, the production function is a purely technical relationship between 

inputs and outputs. Hence a production function identifies the technology available to a 

producer. Similarly, it has been argued that it is legitimate to aggregate across firms and/or 

industries to produce aggregate production functions. 

At its simplest, we can conceive of a series of production process whereby different 

quantities of inputs can be used to produce a unit of a given commodity, e.g., in a two-input 

world. 

Figure 2.1 Production Processes 
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In this illustration, the processes observed use progressively less capital and 

progressively more labour. Hence, none uses the same amount of one input and more of 

another. This is deliberate, since typically a production function only identifies technically 

efficient input combinations, i.e., combinations that use less of one factor and no more of the 

other factors. Note this means that processes that use more of one factor and less of another 

factor cannot be directly compared. 

This can be seen in a simple diagram of production processes. 
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Figure 2.2 Production Processes and Technical Efficiency 
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Using k0 and l0 of inputs to produce a fixed quantity of output is defined as technically 

efficient. Hence, any combination above and to the right of e0 would be technically inefficient 

and a combination below and to the left of e0 would technically be feasible. But any 

combination above and to the left of e0 and below to the right of e0 cannot be compared 

because they use less of one factor and more of another. Notice the similarity to the 

indifference curve derivation and revealed preferences. 

In fact, we can derive a set of relations for producers that are similar to those for 

consumers. These are called isoquants as opposed to indifference curves. 

Production Processes and Isoquants 

The Leontief Isoquant 

Assume there is a single production process, i.e., 
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Figure 2.3 The Leontief Isoquant 
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then for any level of output we have, from our definition of technical efficiency, a right-

angled isoquant, i.e., there is strict complementarity (no substitution possibilities) between the 

factors. This type of isoquant is implicit in input-output analysis. 

Linear-Programming Isoquant 

Assume now there are a limited number of production processes, and that these can be 

combined. 

Figure 2.4 Linear-Programming Isoquant 
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Then for any level of output we have a kinked isoquant where the slope becomes flatter as we 

move from left to right. Note that the segments of the isoquants are linear, which implies the 

assumptions that processes can be combined and are divisible. 
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Smooth Convex Isoquant 

Assume now that there are an infinite number of processes. Then, by the definition of 

technical efficiency, we get a smooth convex isoquant, i.e., 

Figure 2.4 Smooth Convex Isoquant 
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The kinked, or linear-programming isoquant, is probably more realistic, but a large proportion 

of analyses assumes a smooth convex isoquant for two reasons: 

i) it permits the easy use of calculus; 

ii) it approximates a kinked isoquant. 

The production function does not define a single isoquant; rather it defines a whole 

array of isoquants with one for each level of output. Thus, isoquants are everywhere dense 

and, because of our definition of technical efficiency, cannot intersect. 

The Production Function 

The general form of a production function is 

 , , , , ,Y f L K R N  
 (1) 
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where output;

labour;

capital;

raw materials;

land;

returns to scale;

an efficiency parameter.

Y
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



 

but we will concern ourselves with a slightly simpler form. Let us define output as value 

added, X, where 

X Y R. (2) 

This undermines the purely technical nature of the relationship since Y and R are measured in 

non-commensurate units, and thus value added is measured in money units. We will also 

ignore land, or alternatively, treat it as part of capital. Thus, we get the following general form 

X  f L,K,,  (3) 

or, in a specific form which we will use 

X aL K   (4) 

that is a Cobb-Douglas production function where a = the efficiency parameter; ,  = 

coefficients. 

Although the scale factor has apparently disappeared it will soon be seen that it is 

related to the coefficients. You should remind yourself how to differentiate both the general 

and Cobb-Douglas forms of production function. 

Short-run Production Functions and Marginal Products 

Throughout we will assume that labour is variable in the short run and capital is only variable 

in the long run. Short-run production functions refer to the situation where one factor is 

variable and all others are fixed, e.g., 
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Figure 2.5 Short-Run Production Function 
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Thus, as more labour is used with a fixed quantity of capital, and fixed returns to scale and 

efficiency, output increases to a peak, with L1 of labour, and then declines. Note also that 

output is assumed initially to climb progressively more rapidly but the rate of output growth 

then gradually declines. 

The change in output resulting from a change in labour input, ceteris paribus, is the 

marginal product of labour, i.e., 

L

X
MP

L




  (5) 

and is the slope of the production function 

 
, ,K

X f L
 

  (6) 

Thus, we can derive MPL curve from the short-run production function. 
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Figure 2.6 Short-Run Production Function & Marginal Products 
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Note that the MPL curve has three distinct phases: 

 

i) 
X

L
 MPL  0 and 

 2 X

L
2 

 MPL 
L

 0  

 

ii) 
X

L
 MPL  0 and 

 2 X

L
2 

 MPL 
L

 0  

 

iii) 
X

L
 MPL  0 and 

 2 X

L
2 

 MPL 
L

 0  

If, it is sensible to produce any output, then during phase 1 it would be irrational not to 

employ more labour since this increases the MPL by more than the previous unit of labour. 

Similarly, in phase 3 it would be irrational not to employ less labour, since this would 

increase output. Hence, it is only rational to employ labour over the range defined by phase 2. 

Thus, we typically find the short-run production is drawn as 
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Figure 2.7 Standard Short-Run Production Function 
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where the slope, i.e., MPL, is strictly positive. 

This result is important, not only because of its definition of rationality, but because it 

defines the ‘range’ of the isoquants, i.e., 

Figure 2.8 Upper & Lower Ridge Lines 
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At a, b and c the MPK = 0, since ‘beyond’ a, b and c the MPK < 0, while ‘before’ a, b 

and c the MPK > 0. Similarly, at d, e and f the MPL = 0, whereas ‘beyond’ d, e and f the MPL < 

0 and ‘before’ d, e and f the MPL > 0. 
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Thus, only the range over which isoquants are convex to the origin satisfies the 

condition of positive but declining marginal products. 

It is important to note that the vast majority of functional forms used in economic 

models have properties that ensure the isoquants are always convex to the origin, i.e., are not 

‘backward bending’, and hence that the MPs are strictly positive and decreasing. Where this is 

not the case applications usually impose additional conditions that ensure the isoquants are 

convex to the origin. 

Marginal Rate of Technical Substitution (MRTS) 

To see this more clearly we need to develop the concept of MRTS. As with indifference 

curves, the slope of the isoquant defines the degree of substitutability, i.e., 

Figure 2.9 Marginal Rate of Technical Substitution 
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thus, we get 


K

L
 MRTSL, K  (7) 

the marginal rate of technical substitution of labour for capital. As with the MRS, the MRTS 

is equal to the ratio of the MP of the factors. 

Let the production function be 

X  f L,K   (8) 

then 
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. . 0
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 
 

 

   
     
     (9) 

along an isoquant, Thus 

 

 
,

L
L K

K

X LK MP
MRTS

L X K MP

 

  
   

 (10) 

and on the lower labour ridge line 

 

   
,

0
0L K

X L
MRTS

X K X K

 

   
  

. (11) 

Elasticity of Substitution (Technical) 

A major weakness of the MRTS is its dependence upon the units used to measure inputs. To 

avoid this an elasticity measure is preferable. 

The elasticity of substitution,  (sigma) is defined as 

%  in 

%  in 

K
L

MRTS

dK L
K L

dMRTS
MRTS


D


D



 (12) 

which is a pure number since both numerators and denominators are measured in the same 

units. 

Optimal Choice of Factor Combinations 

Derivation of production functions is OK, but of little use alone. All the production function 

is doing is identifying technically efficient input combinations. But, while a producer/firm 

will be interested in operating a technically efficient plant, she will also be interested in 

maximising profit, i.e., will also wish to be allocatively efficient. By being both technically 

and allocatively efficient, she will achieve economic efficiency. 

So, what is allocative efficiency? It is about choosing the optimum combination of 

technically efficient inputs, and is in fact a constrained optimisation problem which can be 

phrased in one of two ways: 
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i) maximisation of output subject to a cost constraint; or 

ii) minimisation of cost subject to a given (fixed output. 

In fact, both can be written as variants of a profit maximisation problem where the 

firm’s objective is profit maximisation subject to different constraints, i.e.,  

Max output 

max 

x

R C

P X C

  

 

 (17) 

where output prices

total (given) costs

xP

C





 

Min Cost 

max  

x

R C

P X C

  

 

 (18) 

We will derive the case for maximising output subject to a cost constraint, but you should 

work through the other case yourselves. First, we need however to develop the concept of an 

isocost line. 

Let assume there are two inputs, K and L, and their supply curves to the firm are 

perfectly elastic, i.e., the firm can buy any quantities of K and L at constant prices, where r = 

price per unit of capital services and w = wage rate. Then 

C wL rK   (19) 

and an isoccost line can be defined as the locus of all combinations of input with the same 

total cost. Thus  
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Figure 2.10 Isocost Line 
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and the slope of the isocost line is 

w

r
 

 (20) 

since we can rearrange the cost constraint to give 

.
C w

K L
r r

   (21) 

and thus, the slope is equal to the ratio of factor prices. 

Maximisation of Output Subject to a Cost Constraint 

For a given production function 

 , , ,X f L K    (22) 

and a cost constraint  

C w L  r K  (23) 

we can derive the following diagram 
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Figure 2.11 Maximisation of Output Subject to a Cost Constraint 
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and the slope of the isocost line is w r . 

All isoquants are technically efficient combinations. But X3 cannot be achieved because 

of the cost constraint, C . Further, output level X1 would not be an output maximisation 

decision given C , since X2 could be produced. Finally, X2 can be produced, but only by 

using L1 and K1 of inputs. 

Further, at e, slope of isocost line = slope of the isoquant, i.e., 


w

r
 

K

L
 MRTSL, K 

MPL

MPK

. (24) 

That is, the ratio of input prices is equal to the ratio of MRTS. This is the condition for 

allocative efficiency. And the simultaneous achievement of allocative and technical efficiency 

yields economic efficiency. 

Formally this is a constrained optimisation problem that is virtually identical to those 

found in consumer theory. That is 

 Maximise ,

sto

or - - 0

X f K L

C wL rK

C wL rK



 



 (25) 

for which the ‘composite’ function is 

  f L, K  C  w L r K  (26) 
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whose partial derivatives, with respect to L, K and , must equal zero for a maximum. Thus 

 

 

0

0

0

X
X Lw

L L w

X
X Kr

K K r

C wL rK

 
 

 

 
 

 






     


     

   

 (27) 

From 


L
 and 



K
we get 

X
L

w 
  

X
K

r 
 (28) 

and rearranging 

X
L

X
K


w 

r 


MPL

MPK

 (29) 

Hence, the first-order condition for a maximum is an equality of the ratios of MPs and factor 

prices. The second-order condition requires that the slopes of the MP curves of the factors 

have negative slopes. This is sufficient to ensure convex isoquants. 

You should work through the case for minimising cost for a gain level of output. Be 

careful not to confuse these two cases. 

This condition can be fulfilled however for isoquants that are concave to the origin, i.e., 
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Figure 2.11 Output Maximisation & Concave Isoquants 
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but e is not an equilibrium since lower cost combinations e1 and e2 exist. This explains why 

there are concerns about second-order conditions. But, as noted above, the choice of 

functional forms in economics is almost invariably one that ensure the second-order 

conditions are irrelevant. 

Long-Run Analysis and Returns to Scale 

The distinction between long and short-run analysis is the extent to which factors can be 

varied. In long-run analysis all factors can be varied. 

Start from the following position 

X0  f L,K  (30) 

where X0 is a specific level of output. Now increase L and K by same constant factor k and we 

get 

X
*
 f kL,kK  (31) 

If 

i) X
*
 kX0

 - constant returns to scale 

ii) X
*
 kX0

 - increasing returns to scale 

iii) X
*
 kX0

 - decreasing returns to scale. 

That is simple enough but we need a bit more. 
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Start again from 

X0  f L,K   (32) 

and increase L and K by a constant, k, to give 

X
*
 f kL,kK . (33) 

Now if k can be factored then we can write 

 *

0,X k f L K k X    (34) 

where  is any power. If this is the case, then the production is homogeneous, if not it is non-

homogeneous. 

The degree of homogeneity, , is a measure of returns to scale. If 

i)  = 1 - constant returns to scale (linear homogeneous) 

ii)  > 1 - increasing returns to scale 

iii)  < 1 - decreasing returns to scale. 

In the Cobb-Douglas case 

0X aL K   (35) 

and 

   

   

 
0

*

.

X a kL kK

a L K k

k X

 

  

 









  (36) 

and therefore 

    . (37) 

Thus 

1 CRTS     

1 IRTS     

1 DRTS     

This provides us with a very simple graphical representation of returns to scale by 

relating the equi-proportionate change in inputs to the proportionate change in output. 
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i) Constant Returns to Scale 

e.g., doubling inputs doubles output. 

Figure 2.12 Constant Returns to Scale 
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The rays are a specific type of product lines. Since all factors are variable in the long-

run, they pass through the origin. 

If the product lines join points on segmental isoquants where the MRTS are constant 

they are known as isoclines. If the isoclines are straight lines then not only is the MRTS 

constant but the factor  K L  ratio is also constant, which means the production function is 

homogeneous. Note: the MRTS and factor ratio is constant for any isocline, but have different 

values for each isocline. 

iii) Decreasing Returns to Scale 

i.e., doubling inputs less than doubles output. 
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Figure 2.13 Decreasing Returns to Scale 
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iii) Increasing Returns to Scale 

i.e., doubling inputs more than doubles output. 

Figure 2.14 Increasing Returns to Scale 
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iv) Variable Returns to Scale 

i.e., returns to scale not everywhere constant, decreasing or increasing. 
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Figure 2.15 Variable Returns to Scale 
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Up to X2 RTS are constant, to X3 we then have IRTS, and thereafter they are decreasing. 

Functions with these characteristics are hard to handle and consequently economists 

rarely use them. 

Also, non-homogeneous functions may display CRTS, DRTS or IRTS but are difficult 

to display. Also, the isoclines will be curves and the factor ratio will vary along each isocline. 

To simplify matters economists therefore prefer homogeneous functions, but it involves 

special and restrictive assumptions. 

‘Law’ of Variable Proportions 

The matter of returns to scale impinges upon the short-run production function since there is a 

relationship between isoquants and the short-run production function. To see this start with 

CRTS, i.e., 
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Figure 2.16 Isoquants and Product Lines 
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and then hold the capital input constant at K. Then we can draw a horizontal product line for 

constant, K, capital, and doubling labour from L to 2L results in a less than doubling of 

output. Thus, for a production function with universal CRTS, the law of diminishing returns 

to the variable factor holds universally. Hence, the short-run production function only exists 

over phase 2. 

It is trivial to show that precisely the same conclusion can be derived for a production 

function with universal DRTS. 

But, it is possible, if highly unlikely, that universal IRTS may result in the diminishing 

returns to the variable factor being more than offset, i.e., 
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Figure 2.17 IRTS and Product Lines 
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To see what is happening for the ‘general’ shape of a short-run production function, you 

should derive an appropriate isoquant map. 

Choice of Optimal Expansion Paths 

The analysis of the choice of optimal input combination undertaken so far has been highly 

static. Conceptually, using the cost minimising case, we could argue that the firm has decided 

how much it wishes to produce in a period and thence maximised profits by minimising the 

total cost combination of inputs, i.e., chosen quantities of L and K such that  

Max = * - -p X wL rK . (38) 

But in the longer term the firm would be free to vary its level of output. In which case the firm 

might be interested in identifying the optimal combinations of L and K for a range of output 

levels. 

In which case, we can identify expansion paths both where all inputs are variable and 

where only one input is variable. 

Long Run Expansion Paths 

If all inputs are variable but that the output price and the input prices are fixed, the expansion 

path will be an isocline. This arises because along an isocline 
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,
L

L K

K

MP
MRTS c

MP
   (39) 

and therefore, given w and r, all points on an isocline satisfy the profit maximising criteria. 

If the production function is homogeneous, then the isocline will be linear and the 

expansion path will be one of constant K/L ration, i.e.,  

Figure 2.18 Long-run Expansion Path 
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and a change in relative factor prices would cause a change of expansion path, i.e., 

Figure 2.19 Long-run Expansion Path & Relative Factor Prices 
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But if the production function is non-homogenous the expansion path will be non-linear, and 

in such a case the MRTS is not constant and thus not associated with a constant K/L ratio. 

Technology and Costs 

Properties of Cobb-Douglas Production Function 

.X a L K   (1) 

i) Marginal Product of Labour 

 

 

1

1

L

L

X
MP aL K

L

aL K L

X
AP

L

 

 








 





 



 

 (2) 

ii) MRTSL,K 

,

.

.

.

L K

X L
MRTS

X K

X L

X K

K

L

 

 















 (3) 

iii) Elasticity of Substitution 

 
.

dK L
dK L MRTSK L

dMRTS dMRTS K L
MRTS

  

 (4) 

and substituting for MRTS gives 
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 

 

 
 

.

.

.

. .

1

.. .

K

LdK L

K LK
d

L

K
d K L d

L

KK LK
dd

LL K L










 

 





  
  
  

  
  
  

 
 
 

  
    

   
     (5) 

since  and  are constant and do not affect the derivative in the denominator. Note: other 

specific forms for production functions exist where 1. 

iv) Returns to Scale 

Start from 

X0  f L,K   (6) 

and increase L and K by a constant, k, to give 

X
*
 f kL,kK . (7) 

Now if k can be factored then we can write 

 *

0,X k f L K k X    (8) 

where  is any power. In this is the case, then the production is homogeneous, if not it is non-

homogeneous. 

In the Cobb-Douglas case 

0X aL K   (9) 

and 

   

   

 

*

0

.

X a kL kK

a L K k

k X

 

  

 









  (10) 

and therefore 

    . (11) 

Thus 

i) 1 CRTS     
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ii) 1 IRTS     

iii) 1 DRTS     

Cost Minimisation in the Long-run 

Formally, for a Cobb-Douglas production function 

X aL K   (12) 

where a and  and  are constants and ( + ) = 1, and the cost function is 

C wL rK  (13) 

where w and r are constant, we seek to minimize the cost of producing a given level of output. 

This is simply a constrained optimisation procedure, i.e., 

Min

Sto

C wL rK

X aL K 

 



 (14a) 

where X  indicates that output is fixed. 

Form the Lagrangian 

 . .w L r K X aL K       (14b) 

and set the derivatives equal to zero 

1

1

. 0

. 0

0

X
w aL K w

L L

X
r aL K r

K K

X aL K

 

 

 


 


 










    




    




  



. (15) 

Solving the first two partial derivatives for  and rearranging gives 

. .

w r

X X

L K



 

   (16) 

which can be written as 
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.

.

.

X
w KL

Xr L

K






  . (17) 

which is the standard first order condition where the ratio of factor prices equals the MRTS. 

Starting from (17) and solving 

. .
w

K L
r




  (18) 

and substituting into the production constraint/function 

. .
w

X aL L
r



 



 
  

 
 (19) 

and then solve for L. First rearrange the RHS 

 . . . .
w w w

X aL L aL L aL
r r r

  
   

  

     
       

     
 (20) 

and then solve 

1
.

.

L X
w

a
r







 
 
 

 (21) 

which expresses the cost minimizing quantity of L as a function of X. The same can be done 

for K, i.e., 

1
.

.

K X
r

a
w








 
 
 

 (22) 

which expresses the cost minimizing quantity of K as a function of X. 

We can now write the long run cost function as 

  . .

1 1
. .

. .

C X w L r K

w r
w r

a a
r w

 
 

 

 

 
   
   
   

. (23) 

If we give the production function a simple form, such as 

0.5 05X L K  
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then (23) simplifies greatly, i.e., 

 

 

0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

1 1
. . . .

1 0.5 1 0.5
. . . .

0.5 0.5

1 1
. . . .

. .

. . . . . .

. . . . 2 . .

C X w X r X

w r
r w

w X r X
w r w r

w w r X r w r X

w r X w r X w r X

 

 

 
   
   
   

 

 

  

. (24) 

Finally, it is useful to see what happens if we differentiate (24) with respect to the factor 

prices. These partial differentials give 

 

 

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

2 0.5 . . . .

2 0.5 . . . .

C
w r X w r X

w

C
w r X w r X

r

 

 


 




 



 (25) 

which, since w, r and X must all be positive, are both positive. Hence as factor prices increase 

so do costs. 

Notice that these derivatives of the cost function with respect to factor prices are 

identical to the expressions for the cost minimizing quantities of the factors, (21) and (22), 

when the parameters from the specified production function are substituted. This is not a 

coincidence: in general the derivative of the cost function with respect to a factor price is the 

cost minimizing quantity of that factor. 

Formal Derivation of Cost Curves from a Production Function 

Formally, for a Cobb-Douglas production function 

X aL K   (26) 

where a and  and  are constants, and the cost function is 

C wL rK  (27) 

where w and r are constant, we seek to derive 

C  f X . (28) 

This is simply a constrained optimisation procedure, i.e., 



Practical CGE Modelling: Technology & Production  

©S.McDonald - 11-Jun-17 29 

Max

Sto

X aL K

C wL rK

 

 

 (29) 

where C  indicates that cost is fixed. 

Form the Lagrangian 

 aL K C wL rK     
 (30) 

and set the derivatives equal to zero 

0

0

0

X X X
w w w

L L L L

X X X
r r r

L K K K

C wL rK
L


    




    








      



      


   
 (31) 

Hence 

. .
X X

L K

w r

 
  

 (32) 

and solving 

. .
w

K L
r






 (33) 

Substituting for K in the production gives 

 

. .

.

w
X aL L

r

w
a L

r







 











 
  

 

 
  

   (34) 

and solving for L 
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 

 

   

1

1

.

.

.

.

X
L

w
a

r

X
L

w
a

r

r X
L

w a

 



 





  




















 
 
 

 
 
 
  
  

  

   
    

    (35) 

and substituting for L in the expression for K gives 

   

 

1

0

1

.
.

.

.

.

w r X
K

r w b

w X
K

r a


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

  

 

 









 
          

 

   
    
     (36) 

Then substituting for L and K in the cost equation 

       

     

1 1

1
1

. .
. .

. .

1 . .
. .

. .

r X w X
C w r

w a r a

r w
w r X

a w r

 

       

 

      

 

 

 

 

   

 


   
                           
    

 
               

    (37) 

Functional Forms and Cost Curves 

Cost functions that produce the ‘U’-shaped ATC, AVC and MC curves and an ‘S’-shaped TC 

curves, and achieve the ‘correct’ intersections, are beyond the scope of this module. However, 

for those students interested the following functional form is among the simplest. 

Let 

C zX  (38) 

where 

z AVC  (39) 
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then 

 z f X  (40) 

Now 

 
. .

zXC X z
z X

X X X X

  
  

   
 (41) 

by the function of a function rule. Thus 

.
C z

z X
X X

 
 

 
 (42) 

Then for AVC > 0 and X > 0, we get 

i) if (slope of the AVC curve) < 0, then MC < AVC 

ii) if (slope of the AVC curve) = 0, then MC = AVC 

iii) if (slope of the AVC curve) > 0, then MC > AVC. 

Furthermore, since the AFC is continuously downward sloping, the minimum point of 

the SATC curve is at a greater level of output than the minimum point of the SAVC curve. 

The simplest total cost function that incorporates the law of variable proportion is cubic 

polynomial, i.e., 

2 3

0 1 2 3C b b X b X b X

TC TFC TVC

   

 
 (43) 

then 

3

1 2 3

2

1 2 3

30

1 2 3

2 3

TVC
AVC b b X b X

X

C
MC b b X b X

X

bC
ATC b b X b X

X X





   

   

    

 (44) 

This produces ‘U’-shaped ATC, AVC and MC curves and an ‘S’-shaped TC curve, and 

achieves the ‘correct’ intersections. 

 

 


