

1

Outline

- Introduction
- Basic LP programmes
- The diet problem
- Comparative advantage
- The GAMS Transport Problem
- Standard algebraic presentation
- Structure of a GAMS Programme
- The Transport Problem in GAMS Code
- Next

2

Introduction

- A classic linear programming (LP) problem
- LP and CGE problems are optimisation problems
- LP problems are a slightly simpler starting point
- AN LP problem can demonstrate all the key elements in a GAMS programme
- The GAMS tutorial uses this LP programme
- A printed copy of the GAMS tutorial may prove helpful.

3

Basic LP Programmes: Diet

- The diet problem
- OBJ: minimise the cost (C) of achieving a minimum consumption of three nutrients (Z_{1}, Z_{2}, Z_{3})
- STO: the two available food commodities $\left(X_{1}, X_{2}\right)$ supplying the nutrients in different ratio $\left(a_{i, j}\right)$
$\operatorname{Min} C=p_{1} \cdot X_{1}+p_{2} \cdot X_{2}$
sto

$$
\begin{aligned}
& a_{11} \cdot X_{1}+a_{12} \cdot X_{2} \geq Z_{1} \\
& a_{21} \cdot X_{1}+a_{22} \cdot X_{2} \geq Z_{2} \\
& a_{31} \cdot X_{1}+a_{32} \cdot X_{2} \geq Z_{3}
\end{aligned}
$$

Basic LP Programmes: Diet

5

7

The GAMS Transport Problem

Indices/Sets
$i=$ plants
$j=$ markets

Available Data
$a_{i}=$ supply of commodity at plant i (in cases)
$b_{j}=$ demand for commodity at market j (in cases)
$d_{i j}=$ distances between plant i and market j ($\$ / \mathrm{mile} / / \mathrm{case}$)
$f=$ freight cost (\$/case/1,000 miles)
Decision Variables
$X_{i j}=$ amount of commodity to ship from plant i to market j (cases)

The GAMS Transport Problem

Constraints
Supply limit at plant i :

$$
\begin{aligned}
& \sum_{j} X_{i j} \leq a_{i} \\
& \sum_{i} X_{i j} \geq b_{j} \quad \forall i \\
& X_{i j} \geq 0
\end{aligned} \quad \forall i, j
$$

Demand at market j :

Objective Function
Minimise $\quad \sum_{i} \sum_{j} c_{i j} X_{i j}$

The GAMS Transport Problem

Data

Plants	New York	Markets		
		Chicago (Distances '000 m)	Topeka	Supplies
Seattle	2.5	1.7	1.8	350
San Diego	2.5	1.8	1.4	600
Demands	325	300	275	

Freight Cost
$\$ 90$ per case per 1,000 miles

11
The Transport Problem in GAMS Code
\$TITLE A TRANSPORTATION PROBLEM (TRNSPORT,SEQ=1)
\$OFFUPPER

* This problem finds a least cost shipping schedule that meets
* requirements at markets and supplies at factories
SETS
i canning plants / SEATTLE, SAN-DIEGO /
i canning plants / SEATTLE, SAN-DIEGO /
j markets / NEW-YORK, CHICAGO, TOPEKA / ;
j markets / NEW-YORK, CHICAGO, TOPEKA / ;
PARAMETERS
a(i) capacity of plant i in cases
/ SEATTLE 350
SAN-DIEGO 600 /
b(j) demand at market j in cases
/ NEW-YORK 325
CHICAGO 300
TOPEKA 275 / ;
Practical CGE, 2021
© cgemod

The Transport Problem in GAMS Code

TABLE $d(i, j)$	distance in thousands of miles		
	NEW-YORK	CHICAGO	TOPEKA
SEATTLE	2.5	1.7	1.8
SAN-DIEGO	2.5	1.8	$1.4 ;$

SCALAR f freight in dollars per case per thousand miles /90/ ;
PARAMETER c(i,j) transport cost in $\mathbf{~} 000$ of dollars per case ;
$c(i, j)=f$ * $d(i, j) / 1000$;

VARIABLES
$X(i, j)$ shipment quantities in cases
Z total transportation costs in thousands of dollars ;
POSITIVE VARIABLE X ;

13

The Transport Problem in GAMS Code

 EQUATIONS
 EQUATIONS
 COST define objective function
 COST define objective function
 SUPPLY(i) observe supply limit at plant i
 SUPPLY(i) observe supply limit at plant i
 DEMAND(j) satisfy demand at market j ;
 DEMAND(j) satisfy demand at market j ;
 COST.. Z =E= SUM((i,j), c(i,j)*X(i,j)) ;
 COST.. Z =E= SUM((i,j), c(i,j)*X(i,j)) ;
 SUPPLY(i).. SUM(j, X(i,j)) =L= a(i) ;
 SUPPLY(i).. SUM(j, X(i,j)) =L= a(i) ;
 DEMAND(j).. SUM(i, X(i,j)) =G= b(j) ;
 DEMAND(j).. SUM(i, X(i,j)) =G= b(j) ;
 MODEL TRANSPORT /ALL/ ;
 MODEL TRANSPORT /ALL/ ;
 SOLVE TRANSPORT USING LP MINIMIZING Z ;
 SOLVE TRANSPORT USING LP MINIMIZING Z ;
 DISPLAY X.L, X.M ;
 DISPLAY X.L, X.M ;

Next

- Transport Problem Exercises
- Exploring the transport problem model
- Debugging a GAMS model
- Syntax errors
- Execution errors
- Changing the model
- Changing unit transport costs
- Changing distances
- Adding a new markets
- Adding intermediate (wholesale) markets

